Windmill Lighting Energy Project Pitch Deck

1. Cover Slide

Project Name: Windmill Lighting Energy

Contact Details:

o City: Hosur

Email: dheepak516@gmail.com

Mobile: 9342299132

• One-liner: Transforming highway safety with renewable wind-powered lighting.

2. Team

- **Dheepak S:** Project Lead, specializing in Electrical and Electronics Engineering with expertise in renewable energy.
- Amshith A S: Technical Lead, focusing on the design and development of wind turbine systems.
- **Kaliswaran M M:** Operations Manager, managing the installation and maintenance of lighting systems.
- **Gunal M:** Business Development Manager, handling client relations, sales, and marketing.

All team members are students studying Electrical and Electronics Engineering.

3. Problem Statement

- **Current Challenges:** Highways need efficient, sustainable lighting solutions to enhance safety and reduce accidents. Existing systems are often costly and unreliable.
- **Existing Solutions:** Traditional electric lighting systems are expensive to install and maintain, and they depend on the power grid, which can be inconsistent.
- **Our Solution:** A wind-powered lighting system that operates independently of the grid, providing reliable, cost-effective, and eco-friendly illumination for highways.

4. Product/Technology Overview

- Innovation: Our product uses wind turbines to generate electricity for highway lighting. The
 system includes energy storage to ensure continuous operation, even during low-wind
 periods. The compact and modular design allows for easy installation and minimal
 maintenance.
- Key Features:

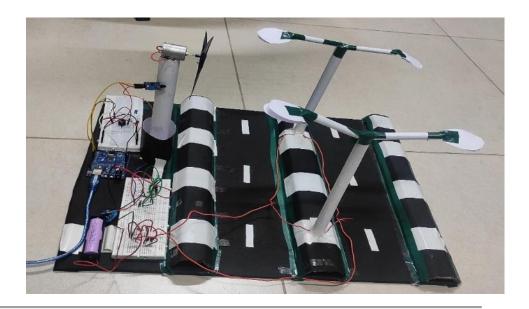
- Renewable Energy: Harnesses wind energy, reducing dependence on non-renewable resources.
- Energy Storage: Includes batteries to store excess energy, ensuring consistent lighting.
- Cost-Effective: Low operational costs due to minimal maintenance and zero energy costs post-installation.

5. Business Model

Revenue Streams:

- Sales: Direct sales of windmill lighting units to government and private highway authorities.
- Maintenance Contracts: Recurring revenue from maintenance and servicing contracts.
- o **Leasing:** Option to lease units to clients, providing a steady revenue stream.
- **Customers:** Target customers include national and state highway authorities, infrastructure development companies, and private toll operators.

6. Market Opportunity


- Market Size in India: Over 200,000 kilometers of highways. Assuming one windmill lighting unit per kilometer, the potential market size is 200,000 units. At an average price of ₹1,60,000 per unit, the market potential is ₹32 billion annually.
- Global Potential: Expanding to countries with extensive highway networks, such as the USA, China, and Brazil, significantly increases the market potential, potentially reaching hundreds of billions of rupees annually.

7. Progress and Milestones

Achievements:

- o **Prototype Development:** Successfully developed a working prototype.
- Submission: Submitting the pitch deck to Uptoskills for further recognition and support.
- Engagement: Engaging with local highway authorities to gather interest and feedback for pilot projects.

Visuals :

8. Competitive Landscape

Competitors:

- Traditional Electric Lighting Providers: Offer conventional lighting solutions that are grid-dependent.
- Solar-Powered Lighting Solutions: Use solar panels but can be less reliable in regions with low sunlight.

Our Advantage:

- o **Lower Operational Costs:** Wind energy reduces long-term costs.
- Sustainable and Renewable: Environmentally friendly solution with a low carbon footprint.
- o **Grid Independence:** Operates independently of the power grid, ensuring reliability even in remote areas.

9. Financial Projections

Assumptions:

o **Unit Price**: ₹1,60,000 per unit

o Year 1 Sales: 500 units

o Year 2 Sales: 1,000 units

Year 3 Sales: 1,500 units

• Revenue Projections:

o Year 1: ₹8,00,00,000

o Year 2: ₹16,00,00,000

o Year 3: ₹24,00,00,000

Cost Breakdown:

o CAPEX (Capital Expenditure): ₹1,60,00,000 for initial production setup

OPEX (Operational Expenditure):

Salaries: ₹80,00,000 annually

Marketing: ₹40,00,000 annually

• Maintenance: ₹40,00,000 annually

Unit Economics:

o **Revenue per Unit:** ₹1,60,000

o **Cost per Unit:** ₹96,000

o Gross Profit per Unit: ₹64,000

10. Funding Requirements

• Funding Needed: ₹4,00,00,000

Use of Funds:

- o **Manufacturing Setup:** ₹1,60,00,000 for equipment and production facilities.
- Marketing and Sales: ₹80,00,000 to promote the product and secure initial clients.
- Operational Costs: ₹80,00,000 for salaries, logistics, and administration.
- R&D: ₹80,00,000 for further development and optimization of the technology.
- **Proposed Valuation:** ₹16,00,00,000 pre-money valuation.
- Investment Plan: This investment will cover 18 months of operations, enabling the deployment of 500 units and reaching ₹8,00,00,000 in revenues. Post this phase, we plan to raise a Series A round of ₹16,00,00,000 to scale up production and expand to international markets.

11. Current Equity Structure and Fundraising History

• Equity Structure:

o Dheepak S: 40%

o Amshith A S: 20%

o Kaliswaran M M: 20%

o Gunal M: 20%

• **Investment History:** Self-funded initial prototype development with ₹2,000.

Previous Investors: None

12. Exit Strategies

Potential Exits:

- Acquisition: Potential acquisition by large infrastructure firms or renewable energy companies.
- o **IPO:** Possibility of going public within 5-7 years as the business scales.

Comparable Exits:

- Acquisitions in the Renewable Energy Sector: Similar startups have been acquired by major players for significant multiples of their revenue.
- IPO Success Stories: Comparable companies in the renewable energy and infrastructure sectors have successfully launched IPOs, providing strong returns to early investors